Category Archives: Spaceflight

RIP James Arthur Lovell Jr. (March 25, 1928 – August 7, 2025)

Only very few of the original space pioneers are still with us, and we keep losing the last remaining few.

Fellow pilot, war hero and astronaut Buzz Aldrin, who keeps very engaged online, posted this:

Grieving the loss of one of my best friends, Jim Lovell. His extraordinary legacy is cemented by many space missions: Gemini VII, Gemini XII, Apollo 8 and Apollo 13.

Our mutual respect had no limits. The Gemini XII mission we flew together paved the way for the Apollo missions.
Heartfelt condolences to Jim’s family.
Farewell Jim. You will be missed, my friend. Godspeed!

Related Articles:

TweetReinhard

Size Comparison

by Reinhard Kargl

Saturn V, SpaceX Starship, Space Shuttle (with external tank and solid rocket boosters).

SpaceX Starship, Tesla Cybertruck, human figure, SpaceX CrewDragon, Space Shuttle.

Related Articles:

TweetReinhard

50 Years Later

by Reinhard Kargl

50 years after it had taken him and his fellow astronauts John Young and Ken Mattingly to the Moon, U.S. Air Force Brig. Gen. Charles Duke (ret.) visits the command module of the Apollo 16 spacecraft.1 (Young passed away in 2018, and Mattingly in 2023).

The photos below show “Charlie” Duke as a U.S. Naval Academy midshipman in 19572, and (back row, third from left) as a student at the USAF Aerospace Research Pilot School class 64-C3, which commenced in August 1964 at Edwards Air Force Base in California. The commandant at the time was Chuck Yeager.

Related Articles:

TweetReinhard

The Tragic End of Laika The Space Dog

by Reinhard Kargl

60 years ago today, topping the spectacular success of Sputnik 1, the Soviet Union again amazed the world with the launch of Sputnik 2. This satellite was much larger than its predecessor, and it carried the first living passenger to space: Laika the dog. The mission paved the way for human spaceflight by proving that life could be sustained in space.

Ever since I was a boy I have been wondering what happened to Laika. My books only reported that she did not survive, but did not give any details. Unfortunately the truth of the matter is rather sad and shocking. I believe Laika’s fate should be mentioned.

At one time, she was a mongrel stray dog wandering the streets of Moscow. She ended up in an animal shelter, and was one of several dogs picked up for the space program. Her age was estimated to be around three years, and she weighed 6 kg (13 pds).

During her training, Soviet personnel called her “Kudryavka” (Russian for “Little Curly”), “Zhuchka” (“Little Bug”) and “Limonchik” (“Little Lemon”), but somehow “Laika” stuck. In addition to her, two alternate dogs were being trained: Albina and Mushka.

The dogs were subjected to noises and forces similar to what they would experience during launch. In order to adapt the dogs to the tiny confines of Sputnik 2, they were kept in progressively smaller containers for up to 20 days. Of course all this meant tremendous stress for the dogs, who stopped urinating and defecating and deteriorated physically. The dogs were trained to eat a gel food, presumably because it produced little bodily waste and was easy to transport and dispense.

The schedule was extremely tight, because Nikita Khrushchev wanted a launch on or before Nov. 7 (the 40th anniversary of the Bolshevik Revolution. It would have been impossible to design a re-entry and landing system in such a short time. As a result, Laika’s flight was planned to end in a fireball. But before re-entry, Laika was meant to be poisoned by remote control.

After the final selection was made, Laika was placed in the satellite three days before launch. Just prior to launch, her fur was sponged in an alcohol solution and iodine was applied. Electrodes were attached to send back telemetry of her bodily functions.

The data showed that during peak acceleration of the launch, her pulse rate increased from 103 to an incredible 240 beats per minute. The poor dog’s breathing quickened to three to four times the normal rate. After engine cut off and in the weightlessness of Sputnik 2’s orbit, she relaxed somewhat, but it took three hours for her life signs to return to normal. She was clearly agitated but appeared to be eating her food.

There had been a problem during launch: one part did not jettison properly, which prevented the climate control system from functioning properly. As a result, the interior of Laika’s vehicle reached 40 °C (104 °F).

Soviet sources gave many conflicting accounts of what happened next, but fact is that Laika suffered a slow and awful death. Perhaps the most authoritative (and most recent) account is contained in a paper submitted by Dr. Dimitri Malshenkov to the World Space Congress in Houston, Texas, in 2002. It asserts that Laika died from overheating between the 5th and 7th hour of the flight.

Laika has not been forgotten, nor should she be. Her name lives on in numerous books and articles, on postage stamps from various countries, in brands of consumables and in pop music: (iTunes currently lists hundreds of items containing “Laika” in either the artist name or song title). 

SaveSave

SaveSave

Related Articles:

TweetReinhard

How To Land A Rocket (Or Not)

The first time I visited SpaceX, it was still a startup company operating out of an industrial warehouse. Since then, SpaceX has become the darling of the New Space movement, and it has a long list of pioneering accomplishments. Among them: the first landings of spent rocket stages for later re-use.

The idea had already been proposed by Wernher von Braun’s team in the 1960s, who hoped to land and re-use future versions of 1st stages for the mighty Saturn V rockets. At the time, the concept could not be pursued due to the tight timeline of the Apollo program.

After the moon missions had been prematurely ended, the Saturn rocket program was eventually put on ice and then canceled entirely. Wernher von Braun thought that the upcoming Space Shuttle program should be supplementary to a continued development of the Saturn multi-stage rockets into a whole family of vehicles with partial reusability.

A part of the proposed Saturn heavy lift rocket family.

In terms of reusability, a multitude of concepts were studied. Propulsive landings would have been too much of a technical challenge at the time, so most proposals included parachutes and a splashdown on water, a paraglider apparatus, or wings. For instance, here some historic papers on the matter:

(Warning: these are large files. Download times may vary). 

Recovery Of The SI-C Stage Of The Saturn V – A Preliminary Feasibility Study (PDF, 1.9 MB)

Recoverable S-IB, Chrysler Corp. Space Division (PDF, 11.9 MB)

Candide Materials for Saturn Paraglider Recovery System, Goodyear Aircraft Corp. (PDF, 1.9 MB)

As Von Braun began to vehemently criticize NASA’s sole focus on the Space Shuttle program, he and his Saturn rockets were cast aside. Von Braun was given an inane desk job in Washington D.C. and left NASA a few years later. But as it turns out, Von Braun’s was right, and his suggested route would have been the correct one. Almost five decades later and into the foreseeable future, multi-stage rockets, not winged bodies, still provide the most reliable and least costly transport to space. Not only that, costs can be dramatically reduced, as SpaceX has clearly demonstrated.

It took a private company, SpaceX a long time to make von Braun’s vision of reusable rocket stages a reality. It wasn’t easy, as this video compilation attests.

SaveSave

SaveSave

SaveSave

Related Articles:

TweetReinhard

Strange Object Flying Toward SpaceX Rocket Before Catastrophe

I have seen a lot of film footage of exploding rockets. (They were quite numerous in the early days of spaceflight). But I’ve never seen anything like the incident that destroyed a SpaceX Flacon 9 at the launch pad at Cape Canaveral on September 1.

I’ve replayed the video provided by USLaunchReport.com over and over, slowed in down, and examined every frame leading up to the event. It seems quite clear that something exploded near the 2nd stage umbilical, which then ripped apart a tank. This happened extremely fast. After the initial explosion, fuel and oxygen can be seen gushing out, rushing down and igniting into a fiery cascade. The initial explosion’s flash was so bright and strong that its reflections can even be seen in the spherical tank sitting on the ground, quite a distance away from the rocket.

But I also noticed a puzzling detail. There’s a strange object moving very rapidly toward the rocket! It doesn’t hit the rocket, but it can still be seen in the air with the initial explosion already in progress.

See for yourself. Here are three frames in sequence. (The time bar does not reflect real time).  I’ve marked the object with an arrow.

Screen Shot 2016-09-02 at 6.43.56 PM

 

Screen Shot 2016-09-02 at 6.44.09 PM

Screen Shot 2016-09-02 at 6.43.25 PM
What is this? An extremely fast-moving aircraft in the far distance? This should be easy to verify or discount. Or perhaps a bird moving rapidly between rocket and camera? This would have been a very fast bird, flying in a perfectly straight line and without a visible wing flap.

All other options I could come up with would be rather sinister — such as a drone or some kind of weapon.

Any other ideas? E-mail me and let me know!

 

 

Related Articles:

TweetReinhard

What Goes Up Must Come Down

Vertically landing rockets have been a staple in science fiction for a long time:

And in the 1960s, Wernher von Braun’s Saturn team was already intensely thinking about outfitting future versions of the Saturn V with reusable stages. Among the many concepts studied were a winged flyback version and a parachute-assisted return. Unfortunately, these ambitions never went beyond the drawing stages. While closing down the Apollo program, NASA made the fateful (and as we now know, mistaken) decision to pursue the Space Shuttle as NASA’s exclusive launch vehicle. The vehemently protesting Wernher on Braun was sidelined and “kicked up” into a senior administrative position with little real decision making power. (Disappointed and unsatisfied, he left NASA a few years later). Since then, astronauts have been confined to low Earth orbit, going essentially nowhere but in circles.

It took almost five decades for the reusable rocket concept to return and become reality, and it was neither NASA nor any other national space program, but two private companies which accomplished the first proof-of-concept.

In November 2015, Blue Origin had successfully landed an experimental test rocket at its launch site in West Texas. It plans to use the rocket again. And on December 21, 2015, California based SpaceX successfully launched a Falcon 9 rocket to space while returning and landing the rocket’s 1st stage to the launch site for a powered, vertical landing.  For the first time a rocket has been successfully landed during a commercial satellite launch.

The concepts used by the two companies are very different, as illustrated here:

ATkpdAX
The end result result of the SpaceX flight is certainly stunning and resembles what science fiction described so many decades ago:

75561_1130233000355218_4847124781773873099_n
It now remains to be seen if recovering and refurbishing an entire rocket stage and its engines is indeed cheaper than building a new one — something that hasn’t been tried on a commercial scale. But if Wernher von Braun was right (and he usually was), this should be the way to go.

Related Articles:

TweetReinhard

Earth As Seen From Saturn

This picture shows us. All of us on planet Earth. All 7 billion human beings contained one tiny dot of light.

Earth from Saturn

(Click to enlarge)

In this rare image taken on July 19, 2013, the wide-angle camera on NASA’s Cassini spacecraft has captured Saturn’s rings and our planet Earth and its moon in the same frame. It is only one footprint in a mosaic of 33 footprints covering the entire Saturn ring system (including Saturn itself).  At each footprint, images were taken in different spectral filters for a total of 323 images: some were taken for scientific purposes and some to produce a natural color mosaic.  This is the only wide-angle footprint that has the Earth-moon system in it.

The dark side of Saturn, its bright limb, the main rings, the F ring, and the G and E rings are clearly seen; the limb of Saturn and the F ring are overexposed. The “breaks” in the brightness of Saturn’s limb are due to the shadows of the rings on the globe of Saturn, preventing sunlight from shining through the atmosphere in those regions.  The E and G rings have been brightened for better visibility.

Earth, which is 898 million miles (1.44 billion kilometers) away in this image, appears as a blue dot at center right; the moon can be seen as a fainter protrusion off its right side. An arrow indicates their location in the annotated version. (The two are clearly seen as separate objects in the accompanying narrow angle frame: PIA14949.) The other bright dots nearby are stars.

This is only the third time ever that Earth has been imaged from the outer solar system. Continue reading

Related Articles:

TweetReinhard

Let’s Keep Dryden

Congressman Kevin McCarthy has recently introduced a bill (HR 6612) to change the name of the NASA Dryden Flight Research Center in California’s Mojave Desert to “Neil A. Armstrong Flight Research Center”.

Although I greatly admire Neil Armstrong (who doesn’t?), I am opposed to the proposed name change. One reason is tradition, and another: The world does not need one more reminder of the first man on the moon. Every literate person knows who he was. But we should keep a reminder of the very significant and essential contributions of space pioneer Hugh L. Dryden, with whom the general public is less familiar. (Armstrong himself would be the first to point out that getting to the moon was a gigantic team effort and impossible to achieve without the likes of Dryden).

In an article posted on the Smithsonian Air & Space magazine’s web site, Paul Spudis makes a much more informed plea for Dryden than I ever could. Please read it here:

Hugh L. Dryden and the American Space Program

Related Articles:

TweetReinhard